Revista CEFAC
https://revistacefac.org.br/article/doi/10.1590/1982-0216/20222439021
Revista CEFAC
Artigos Originais

Cortical auditory evoked potentials using the speech stimulus /ma/

Ysa Karen dos Santos Macambira; Pedro de Lemos Menezes; Ana Claudia Figueiredo Frizzo; Silvana Maria Sobral Griz; Denise Costa Menezes; Karina Paes Advíncula

Downloads: 0
Views: 21

Abstract

Purpose: to compare cortical auditory evoked responses using two speech stimuli, /ma/ and /da/, in normally hearing young adults.

Methods: a cross-sectional, observational and analytical study, with a sample composed of nineteen normally hearing young adults, recruited by convenience, ages between 18 and 25 years old, from both genders, participated in the study. Cortical auditory evoked potentials (CAEP) were monaurally recorded in two conditions: 1) with a pair of speech stimuli /ba/ and /da/, and 2), with a pair of speech stimuli /ba/ and /ma/. The order of the experiments was randomized in a proportion of 50% for each of the two stimuli, totaling 100 stimuli for each experiment. Speech sounds were presented at 70 dB SPL. Descriptive and analytical statistical tests were performed.

Results: mean latency values of the complex P1, N1, P2, N2 and P3 were lower for the /ma/ when compared to those of /da/ (p <0,05). There was no difference in amplitude values between responses evoked using /ma/ and /da/.

Conclusion: cortical auditory evoked potentials, elicited by the speech stimulus /ma/ had, on average, lower latency peaks of P1-N1-P2-N2 and P3, when compared to those of speech stimulus /da/.

Keywords

Electrophysiology, Evoked Potentials, Auditory, Speech Therapy

Referências

1. Lean Y, Shan F, Xuemei Q, Xiaojiang S. Effects of mental workload on long-latency auditory-evoked-potential, salivar cortisol, and immunoglobulin A. Neurosci Lett. 2011;491(1):31-4.

2. Prakash H, Abraham A, Rajashekar B, Yerraguntla K. The effect of intensity on the speech evoked auditory late latency response in normal hearing individuals. J Int Adv Otol. 2016;12(1):67-71.

3. Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol. 1975;38(4):387-401.

4. Polich J. Theoretical overview of P3a and P3b. In: Polich J, editor. Detection of Change: Event-Related Potential and fMRI Findings. Boston, MA: Kluwer Academic Press; 2003. p.83-98.

5. Kim JR, Ahn SY, Jeong SW, Kim LS, Park JS, Chung SH et al. Cortical auditory evoked potential in aging: effects of stimulus intensity and noise. Otol Neurotol. 2012;33(7):1105-12.

6. Rocha CN, Filippini R, Moreira R, Neves IF, Schochat E. Potencial evocado auditivo de tronco encefálico com estímulo de fala. Pró-Fono R. Atual. Cientif. 2010;22(4):479-84.

7. Kraus N, Nicol T. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system. Trends Neurosci. 2005;28(4):176-81.

8. Massa CGP, Rabelo CM, Matas CG, Schochat E, Samelli AG. P300 with verbal and nonverbal stimuli in normal hearing adults. Braz J Otorhinolaryngol. 2011;77(6):686-90.

9. Oppitz SJ, Didonea DD, Silva DD, Gois M, Folgearini J, Ferreira GC et al. Long-latency auditory evoked potentials with verbal and nonverbal stimuli. Braz J Otorhinolaryngol. 2015;81(6):647-52.

10. Song JH, Banai K, Russo NM, Kraus N. On the relationship between speech- and nonspeech-evoked auditory brainstem responses. Audiol Neurootol. 2006;11(4):233-41.

11. Jakobson R. Child language, aphasia and phonological universals. Paris: Mouton; 1972[1941].

12. Vihman M. Word learning and the origins of phonological systems. In: Foster-Cohen S, editor. Language Acquisition. Palgrave Advances in Linguistics. London: Palgrave Macmillan; 2009;15-39.

13. Wagner M, Roychoudhury A, Campanelli L, Shafer LV, Martin B, Steinschneider M. Representation of spectro-temporal features of spoken words within the P1-N1-P2 and T-complex of the auditory evoked potentials (AEP). Neurosci Lett. 2016;12(614):119-26.

14. McPherson DL. Late potentials of the auditory system. San Diego: Singular; 1996.

15. Ross B, Tremblay K. Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hear Res. 2009;248(1-2):48-59.

16. Tremblay KL, Ross B, Inoue K, McClannahan K, Collet G. Is the auditory evoked P2 response a biomarker of learning? Front Syst Neurosci. 2014;8:20-8.

17. Morlet D, Rubi P, André-Obadia N, Fischer C. The auditory oddball paradigm revised to improve bedside detection of consciousness in behaviorally unresponsive patients. Psychophysiology. 2017;54(11):1644-62.

18. Hall J. New handbook of auditory evoked responses. Boston (USA): Allyn & Bacon; 2006.

19. Polich J, Howard L, Starr A. Effects of age on the P300 component of the eventrelated potential from auditory stimuli: peak definition, variation, and measurement. J Gerontol. 1985;40(6):721-6.

20. Machado CSS, Carvalho ACO, Silva PLG. Caracterização da normalidade do P300 em adultos jovens. Rev Soc Bras Fonoaudiol. 2009;14(1):83-90.

21. Advíncula KP. Estudo dos potenciais evocados auditivos de longa latência em crianças com desvios fonológicos [Thesis]. Recife: Universidade Católica de Pernambuco; 2004:143.

22. Lee SH. Fonologia gerativa. Fonologia, fonologias: uma introdução. In: da Hora D, Matzenauer CL, editors. São Paulo: Contexto; 2017.p.31-46.

23. Chomsky N. Knowledge of language: Its nature, origin and use. New York (USA): Praeger; 1986.

24. Clements GN. Phonological feature. In: Contemporary Views on Architecture and Representations in Phonology. Cambridge: MIT Press; 2009.p.19-68.

25. Lazzarotto-Volcão C. Uma proposta de Escala de Robustez para a aquisição fonológica do PB. Letrônica. 2010;3(1): 62-80.

26. Trainor LJ, Lee K, Bosnyak DJ. Cortical plasticity in 4-month-old infants: specific effects of experience with musical timbres. Brain Topogr. 2011;24:192-203.

27. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128-48.

28. Andrade VM, Santos FH, Bueno OFA. Neuropsicologia hoje. São Paulo: Artes Médicas; 2004.

29. Swink S, Stuart A. Auditory long latency responses to tonal and speech stimuli. J Speech, Lang Hear Res. 2012;55(2):447-59.

30. Novak GP, Ritter W, Vaughan Jr HG, Wiznitzer ML. Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalogr Clin Neurophysiol. 1990;75(4):255-75.

31. Crowley KE, Colrain IM. A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol. 2004;115(4):732-44.

32. Ordunã I, Liu EH, Church BA, Eddins AC, Mercado E. Evoked potential changes following discrimination learning involving complex sounds. Clin Neurophysiol. 2012;123(4):711-9.

33. Tremblay KL, Piskosz M, Souza P. Effects of age and age-related hearing loss on the neural representation of speech cues. Clin Neurophysiol. 2003;114(7):1332-43.

34. Digeser FM, Wohlberedt T, Hoppe U. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables. Ear Hear. 2009;30(6):704-12.

35. Tremblay KL, Billings CJ, Friesen LM, Souza PE. Neural representation of amplified speech sounds. Ear Hear. 2006;27(2):93-103.

36. Tremblay KL, Kraus N, McGee T, Ponton C, Otis B. Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear Hear. 2001;22(2):79-90.
 


Submetido em:
11/10/2021

Aceito em:
05/08/2022

663bed0fa953954ff766d612 cefac Articles
Links & Downloads

Revista CEFAC

Share this page
Page Sections